...

Zalecenia treningowe: acetylocholina

Acetylocholina odgrywa kluczową rolę w kontekście pracy układu mięsniowego – uczestniczy w inicjowaniu i koordynacji skurczów mięśni. Z niniejszego artykułu dowiesz się, jakie ćwiczenia mogą przyczyniać się do zwiększenia poziomu acetylocholiny w mózu oraz w jaki sposób przekłada się to na aktywność fizyczną. Co więcej, znajdziesz tu cenne wskazówki dotyczącego tego, jak można prowadzić trening, by najlepiej stymulować tę sferę neuroaktywności, a także przykładowe plany treningowe.

Czasami bywa tak, że nie jesteśmy zadowoleni ze swojego stanu emocjonalnego. Brakuje nam równowagi w życiu lub motywacji do działania. W tym przypadku ciekawe wydają się zagadnienia z zakresu neuroregulacji za pomocą różnych narzędzi, w tym suplementacji czy psychoterapii. A gdyby takim narzędziem była aktywność fizyczna? Dlatego interesuje nas pytanie, czy jesteśmy w stanie sterować poszczególnymi neuroprzekaźnikami, regulując ich poziom za pomocą wybranych ćwiczeń? Jesteśmy świadomi, że nasze stany emocjonalne zależą od aktywności wielu neuroprzekaźników, ale tym razem skupimy  się na acetylocholinie. To ona jest bowiem bezpośrednio związana z powstawaniem ruchu w naszych mięśniach [1,2]. Zrozumienie, jak różne rodzaje ćwiczeń i strategie treningowe wpływają na aktywność acetylocholiny, może pomóc w stworzeniu bardziej efektywnych programów treningowych. W artykule tym przyjrzymy się bliżej mechanizmowi działania acetylocholiny, omówimy wpływ różnych form aktywności fizycznej na jej syntezę i wydzielanie, a także przedstawimy praktyczne wskazówki, jak zoptymalizować plan treningowy, aby maksymalnie wykorzystać potencjał tego neuroprzekaźnika.

Nie masz dostępu do tych treści

Wygląda na to, że nie masz rangi Specjalista,
aby ją otrzymać musisz wykupić subskrypcję klikając na przycisk poniżej.

Bibliografia

  1. Cetin H. et al. The Structure, Function, and Physiology of the Fetal and Adult Acetylcholine Receptor in Muscle. Frontiers in Molecular Neuroscience, 2020.
  2. Unwin N. et al. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Letters, 2003.
  3. Picciotto M. et al. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron, 2012.
  4. Twyman R. et al. Neurotransmission and Neuromodulation: Acetylcholine. 2009.
  5. Chen Zhi-Ru et al. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules, 2022.
  6. Haam J. et al. Cholinergic modulation of the hippocampal region and memory function. Journal of Neurochemistry, 2017.
  7. Vivar Carmen et al. Running Changes the Brain: the Long and the Short of It. Physiology, 2017.
  8. Pepeu G. et al. Changes in acetylcholine extracellular levels during cognitive processes. Learning & Memory, 2004.
  9. Kuo M. et al. Focusing Effect of Acetylcholine on Neuroplasticity in the Human Motor Cortex. The Journal of Neuroscience, 2007.
  10. Twyman R. et al. Neurotransmission and Neuromodulation: Acetylcholine., 2009.
  11. Teles-Grilo Ruivo L. M. et al. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. Cell Reports, 2017.
  12. Zhang H. et al. Spatiotemporal Coupling between Hippocampal Acetylcholine Release and Theta Oscillations In Vivo. The Journal of Neuroscience, 2010.
  13. Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast, 2017.
  14. Mohapel P. et al. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiology of Aging, 2005.
  15. Ríos DCZ, Miramar AJM. Nicotinic acetylcholine receptor in skeletal muscle. Int J Complement Alt Med, 2023.
  16. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc, 2011.
  17. Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer’s disease: a sound mind in a sound body. EXCLI J, 2017.
  18. Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SE, Talebi M. Astrocytic and microglial nicotinic acetylcholine receptors: An overlooked issue in Alzheimer’s disease. J Neural Transm, 2016.
  19. Farzi MA, Sadigh-Eteghad S, Ebrahimi K, Talebi M. Exercise Improves Recognition Memory and Acetylcholinesterase Activity in the Beta Amyloid-Induced Rat Model of Alzheimer’s Disease. Annals of Neurosciences, 2019.
  20. Teglas T. et al. Effects of Long-Term Moderate Intensity Exercise on Cognitive Behaviors and Cholinergic Forebrain in the Aging Rat. Neuroscience, 2019.
  21. Xu L. et al. Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiol. Dis., 2019.
  22. Soendenbroe C. et al. Human skeletal muscle acetylcholine receptor gene expression in elderly males performing heavy resistance exercise. American Journal of Physiology-Cell Physiology, 2022.
  23. Conlay LA, Sabounjian LA, Wurtman RJ. Exercise and neuromodulators: choline and acetylcholine in marathon runners. Int J Sports Med, 1992.
  24. Anish EJ. Exercise and its effects on the central nervous system. Curr Sports Med Rep, 2005.
  25. Kurosawa M. et al. Extracellular release of acetylcholine, noradrenaline and serotonin increases in the cerebral cortex during walking in conscious rats. Neurosci. Lett., 1993.
  26. Sam C, Bordoni B. Physiology, Acetylcholine. In: StatPearls. StatPearls Publishing, Treasure Island (FL), 2023. PMID: 32491757.
  27. Moran SP, Maksymetz J, Conn PJ. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends in Pharmacological Sciences, 2019.
  28. Mucci F, Palermo S, Marazziti D, et al. Impact of Physical Exercise on Psychological Well-being and Psychiatric Disorders. Journal for ReAttach Therapy and Developmental Diversities, 2020.
  29. Zong B. et al. Understanding how physical exercise improves Alzheimer’s disease: cholinergic and monoaminergic systems. 2022.
  30. Krstić M. A further study of the cardiovascular responses to central administration of acetylcholine in rats. Neuropharmacology, 1982.
  31. Fish R. et al. Responses of coronary arteries of cardiac transplant patients to acetylcholine. The Journal of Clinical Investigation, 1988.
  32. Rocha-Resende C. et al. Protective and anti-inflammatory effects of acetylcholine in the heart. American Journal of Physiology-Cell Physiology, 2021.
  33. Inoue R, Kitamura K, Kuriyama H. Acetylcholine activates single sodium channels, 1987.
  34. Doyle MP, Duling BR. Acetylcholine induces conducted vasodilation by nitric oxide-dependent and-independent mechanisms. American Journal of Physiology-Heart and Circulatory Physiology, 1997.
  35. Maiorana A. et al. Exercise and the nitric oxide vasodilator system. Sports Medicine, 2003.
  36. Laughlin MH, Schrage WG. Effects of muscle contraction on skeletal muscle blood flow: when is there a muscle pump?. Medicine and Science in Sports and Exercise, 1999.
  37. Blotnick E, Anglister L. Exercise modulates synaptic acetylcholinesterase at neuromuscular junctions. Neuroscience, 2016.
  38. Costill DL. et al. Adaptations in skeletal muscle following strength training. Journal of Applied Physiology, 1979.
  39. Physical Activity Guidelines for Americans. U.S. Department of Health and Human Services. 2nd ed. https://health.gov/paguidelines/second-edition. Accessed March 4, 2021.
  40. Snyder D. et al. Effects of neuromuscular activity on choline acetyltransferase and acetylcholinesterase. Experimental Neurology, 1973.
  41. Bukharaeva E. et al. Presynaptic Acetylcholine Receptors Modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular Junctions. Biomedicines, 2022.
  42. Fu D, Yang W, Xie X. Label-free Imaging of Neurotransmitter Acetylcholine at Neuromuscular Junctions with Stimulated Raman Scattering. Journal of the American Chemical Society, 2017.
  43. Drachman D. The Role of Acetylcholine as a Neurotrophic Transmitter. Annals of the New York Academy of Sciences, 1974.
  44. Wilkinson D et al. P The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Research Reviews, 2018.
  45. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012.
  46. Rada P et a.,  Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience, 2006
  47. Das, UN, Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Annals of hepatology, 2012
  48. Cardoso, A. et al, Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. American journal of hypertension, 2014
  49. Carrasco, M., & Vaquero, M., Water training in postmenopausal women: Effect on muscular strength. European Journal of Sport Science, 2012
  50. Guerra, L. et al., A Low-Cost and Time-Efficient Calisthenics Strength Training Program Improves Fitness Performance of Children. Journal of physical education and sport, 2012
  51. Kotarsky, C. et al., Effect of Progressive Calisthenic Push-up Training on Muscle Strength and Thickness. Journal of Strength and Conditioning Research, 2017
  52. Tsourlou, T. et al., The Effects of a Calisthenics and a Light Strength Training Program on Lower Limb Muscle Strength and Body Composition in Mature Women. Journal of Strength and Conditioning Research, 2003
  53. Iversen, V. et al,. Multiple-joint exercises using elastic resistance bands vs. conventional resistance-training equipment: A cross-over study. European Journal of Sport Science, 2017
  54. Bergquist, R. et al., Muscle Activity in Upper-Body Single-Joint Resistance Exercises with Elastic Resistance Bands vs. Free Weights. Journal of Human Kinetics, 2018